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THE FORMATION QF VORTICES IN A FREE BOUNDARY LAYER
H. Sechade and A. Michalke

Institut fur Turbulenzforschung der Deutschen
Versuchsanstalt fur Luft-~ und Raumfahrt (DVL))

1.  Introduction S /TR

It has long been known that the transition from a round
laminar free jet to turbulence passes through a periodic Inter-
medlate state in which the cylindrical interface between the jet
and the surrounding fluid rolls up in a meandering fashion.
Figure 1 shows this process in water behind a nozzle with a
diameter of 1.5 cm at a Reynolds number of 1800, based on
average velocity in the nozzle and nozzle diameter; this photo-
graph comes from a film by E. Berger [1l] on the laminar-turbulent
transition.

Fig. 1. Free Jet in water at Reynolds number Re = 1800,
nozzle diameter D = 1.5 cm.

As early as 1867, J. -Tyndall [2] observed that the boundary
of an alr Jet, made visible with smoke, 1s very unstable with
respect to excltation by sound. A year later, H. Helmholtz [3],
who was familiar with Tyndall's work and found confirmation for

#Numbers in the margin indicate paglnation in the foreign text.

1



1ts results, concluded on the basis of theoretical considera-
tions that the boundary would have to roll wup. Although he
does not expressly state ﬁow he arrived at this conclusion, it

. 1s reasonable to assume that he approximated the boundary, which
is of course a cylindrical vortex sheet for an ideal fluid, by
a serles of discrete ring vortices and conslidered the induction
effects these ring vortices have upon one another when they are
deflected from the equilibrium position in the form of a slight
waviness 1n the vortex sheet. Figure 2, top, shows a series of
vortices arranged at the extrema and the iInflection points of
a sine curve. In addition, the velocities induced by the two /148
neighboring vortices at the location of a vortex and theilr
resultant are plotted in each case. Below that, the same series
of vortices is shown a brief time later, when each vortex has
migrated a certain distance due to the induced veloclity field;
the velocities induced in the new location are alsc plotted
agalin. The same conflguration is plotted under this after another
interval of the same length.

l.2. Early Theoretical
" Studies

The exact mathematical
confirmation of this concept
took place in two steps.

Lord Rayleigh [4] was first
able to demonstrate, in 1878,
that a planar vortex sheet

in an ideal fluid is unstable
vis-a-vis smail wavy dis-

turbances of any given fre-
quency and wavelength. In
1931, I.. Rosenhead [5] then

Fig. 2. The rolling up of a
vortex :sheetw according to
Helmholtz. demonstrated that a planar
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vortéx. sheet 1n an 1ldeal fluid rolls up in a meandering fashion
after 1t is once perturbed in a wévy configuration. Rosenhead's
calculations were glven a critical check in 1959 by G. Birkhoff

and J. Fisher [6] and were then improved, independently of this,
by F.R. Hama and E.R. Burke [7].

The following considerations are essential in this work:
Rayleigh's calculations do demonstrate the instability of the
vortex sheet but can not explaln why only one of the infinite
number of unstable wavelengths 1n the experiment occurs such
that an observable phenomenon takes place. This is a result of
neglecting viscosity: The vortex sheet is unstable because the
induction effects resulting from the various elementary vortices
are 1n unstéable equilibrium. This is explainable within the
theory of ideal fluids, and the addition of fluid friection has
only a damping effect on this;; The favoring of a specific
frequency and wavelength 1s a consequence of the shear profile
which develops under the influence of viscosity, however. This
is directly evident for a planar vortex Sheet; in this case, a
characteristle length manifests 1tself only as the result of
taking the shear profile intocconsideration, and this 1is the
condition for the occurrence of a speclal frequency or wavelength.
For a cylindrical vortex sheet, we could consider jet diameter to
be a characteristic length; the good agreement between the data
obtained with the round free jet and the theoretical results
derived for the planar case 1lndicates, however, that the effect
of axial symmetrysis secondary. This 1s also reasocnable because
a phenomenon is invelved in which the boundary layer is small
relative to jet diameter. Studles on the effect of axial sym-

lIn contrast, it 1s known that Blasius' laminar boundary layer,
for instance, becomes unstable only when friction is taken into
consideration. It 1s desirable to designate these two types of
unstable flow as induction-unstable and friction-unstable,
respectively.



" 1.3. Previous Experimental Studies

The vortices produced in the axlally symmetrical free jet
are being studled at the DVL's Institut flir Turbulenzforschung
in a series of projects with the aid of the hot-wire measure-
ment method. The first results of these studies can be found in
two reports by R. Wille, U. Domm, H. Fabian and 0. Wehrmann [8]
and by R. Wille, 0. Wehrmann and H. Fabian [9]. H. Fabian [10]
studied the velocity profile of the vortex rings, while 0. Wehr-
mann [11] concerned himself with acoustic effects on vortex rings
0. Wehrmann and R. Wille [12] and R. Wille [13] provide a summary
of the studies. Independently, H. Sato [14, 15] has applied
similar studies to a free shear layer behind a step and to a
planar free jet.

Measurements of two quantities are essential for this work:
First, we can measure the frequency of vortices which develop
without artificially influencing the flow. Studiles by 0. Wehr-
mann [16] have indicated that this natural vortex development
behind the nozzle is not strictly periodic, but rather that
the frequency fluctuates about a certaln mean. A timewise mean
for this so-called natural frequency can be determined from a
large number of frequency measurements. On the other hand, we
can artificially impress a sound field on the jet of such low
intensity that 1t 1s not picked up by the hot-wire probe. Vortex
formation at this frequency can then be induced in a region on
both sldes of the natural frequency at a point in the flow where
vortices cannot be observed without the sound field. Figure 3
shows the natural and artificially excited velocity fluctuations,
made visible on an oscillograph, which are caused by the vortices
which pass by the hot-wire probhe.
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- Due to the great deal
of regularity in the arti-
flelally excilted vortices,
it is also possible in this
case to measure the distance

Natural Vortex Frequency
Vortex:. Excited by Sound between two yortices from
Frequency : the phase relationship

Fig. 3. Oscillograms of a) the between a flxed and a

natural vortex frequency, and movable hot-wire probe..
b7 the frequency excited by sound.

Us = 4.53 m/sec, D = 10 cm,

x/D = 0.38.

1.4, Subject of This Study

The process of vortex formation could thus be described as
follows: Due to friction, a wall boundary layer forms in the
nozzle and a free shear layer downstream from it whilch can be
computed at low viscosity with the aid of boundary layer theory.
At low viscosity, thls shear layer is induction-unstable with
respect to a certain range of frequencies and wavelengths, which
can be calculated with the aid of stabllity theory -- at the
very low viscoslty, with the ald of the/frictionless stabllity
theory to a good approximation. All unstable frequencies and
the assoclated wavelengths can be excited by artificial stimulus;
without artificial effects, the most unstable disturbance
primarily develops. Once a dominant wavelength has developed,
the wave rolls up, at low viscosifty, under the influence of
the mutual induction of elementary vortices, maintaining fre-
quency and wavelength, as Rosenhead described for an ideal fluid.

The subjJect of this work is a first attempt to calculate
the natural frequency derived from this mechanism and the functional
relationship between the excliting frequency and the wavelength
which develops, and to compare these with the empirical results.



2. Velocity Field

2.1, Steady Region

A study will be made to determine the quantitles upon which
the velocity at a point in the flow depends. First of all, it
of course depends upon the geometry of the nozzle which produces
the jet. Since this relationship is of no interest in the
present context, it can be eliminated by using only geometrically
similar nozzles: the vortex filament nozzles described by A.
Michalke [17] were employed, which have the advantage that the
potential velocity fleld therein can be calculated relatively
easily. Figure 4 shows the contour of such a vortex filament

nozzle.

Aslde from this, the
magnitude of velocity at a

point in the flow 1s a function

of five variables:

Two position coordinates

in the meridian plane, such as

- ‘ working length x measured along
o the line of wall flow 1n the
nozzle and along its continua-

9 | f tion in the free jet, and a
£ _ coordinate y perpendicular to 1t;

Fig. 4. Wall contour of the

WA

‘ax. filament nozzle.
Zoﬁ;:xdimeisionlgss eylindri- the nozzle, such as 1ts diameter
»
2

_cal coordinates.... . .. .. D at the end cross section<;. .

A characteristic length for

2The selection of nozzle diameter as a characteristic length could
be taken as a contradiction to the statement made above that axial
symmetry is only of secondary lmportance. This objection is



A characteristic velocity, such as the velocity Uy on the
nozzle axis at the end cross section;

The kinematic viscoslity v of the fluid. If the units of
length and velocity are glven, three independent parameters remain,
e.g. the two posltion coordinates x/D and y/D and viscosity
v/UgD or Reynolds number

Re = U,D/v (1)

If we take Prandtl's boundary layer equations as our basis,
rather than the Navier-Stokes equations, we can alsc eliminate
the dependence upon Reynolds number by means of the well-known
variable transformation n = (y/D)¢¥Re. Velocity at a given
point in the flow can then be written in the form

Cu ” (:-: Ly 1/1?.3)
U, U,\D'T DT

i.e. we can describe the velocity field in and downstream from /150
such a nozzle by one velocity profile

o ”. B H W ,
m'u(Dmd\

i)

each for each value of working length x/D.

The complete computation of these profiles 1s so complex
that we consider it sufficient to characterize each by two
characteristic quantities. Within the nozzle, velocity Up at
lthe marglin of the boundary layer and displacement thickness

-

2 (Cont'd)‘“eliminated‘if we perhaps selected the length of the
nozzle contour instead. For geometrically similar nozzles,
however, all lengths are proportional and therefore of equivalent
value as reference lengths, and the diameter of the nozzle at

the endrcross section is the most graphic.



can be used for this purpose.

(2}

Figure 5 shows the curves for

these two characteristic quantities from studies by A. Michalke

[17].

1s still in progress.
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Filg. 5. Displacement thickness (8§%/D)/Re
of the boundary layer and potential veloc-
ity . Up/Ug along the wall of the vortex
filameng nozzle (x/D are length, Uy veloc-
ity:. at center of end.nozzle cross sec-
tion).

Key:

a. Theoretical curve of potential velocity

b. Curve of potential velocity corrected
on the basis of measurements

c. Displacement thickness of boundary
layer, calculated on the basis of
curve b

d. Displacement thickness of boundary
layer, calculated on the basis of
curve a

e. Beglinning of nozzle wall

f. End.cross .section of nozzle

—— Modified Kotschin method
---~ Zaat method
O Data for D =
® Data for D =
[Commas 1in numerals =

g

10 em
7.5 em )
decimal points.]

Computation of the velocity profiles outside the nozzle

i vThecveloekby o
profliles inside and
outside the nozzle
have also been
measured by a method
described by 0. Wehr-
mann [16] and A.
Michalke [17].

Figure 6 shows two

of the profiles
plotted by a light-
spot recorder at

the end:cross section
of the nozzle and a
short distance down-
stream. Average
profiles were plotted
from measurements at
various velocities;
these are shown.in
Fig. 7. 1In the

end cross ‘section of
the nozzle, the two
characteristiec quanti-
ties were found to be



Up/U = 1.06, (a*/n)xﬁ€'=_1;20, (3)

O

2.2, Periodically Nonsteady Region

The addition of dependence upoh time makes the velocity

field so complex that it is reasonable to limit ourselves from

the outset to a conslderation of two conveniently measurable

characteristics of flow in this region, namely the frequencies

and wavelengths of the resultant vortices.

i/ C .
{
7 -~.Einschalten deg

; Sondenvorschubs

it n e
—= Imm !—-— : |
u E K
& _._i_w-{
. o
i P
| =l
i
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b i n e n a I
. +—{ 1mm 11‘—

Fig. 6. Two velocity profiles in

and downstream from the vortex
filament nozzle, plotted by a
light spot recorder.

3

a) D = 10 cm, U, = 4.53 m/sec,
¥ = =-0.2 mm

b) D= 10 em, Uy = 4.53 m/sec,
X = 16 mm

Key: c. Probe advance started

If the above-stated
assumption that viscosity
is not of direct importance
to the rolling-up process,
but is only of secondary
importance via the forma-
tion of a shear profile,
i1s wvalid, these parameters
depend only upon a charac-
teristic length and a charac-
teristic velocity for the
shear profile, but net also
upon the viscosity of the
medlum, if consideration is
1imited to vortex fllament
nozzles. U, and §¥ in the

. P
nozzle end cross sectlon can,

according to the above con-
siderations, serve as these
characteristic quantities;
since Up and Ug have a
constant ratlo there,

regardiess of the experimental conditions, it is reasonable to

use the more easily measured Up in place of Up. Accordingly,

0 9
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the frequency fé¥%/Up and

|
li
a5t - : B — } , ,
L_Fﬂ,;// : \ the wavelength A/6% of
#/D=0 15— g ! - :
; : ! \ natural perturbations
N 7 L 3
R/l \ would have to be constants
independent of Reynolds

Fig. 7. Averaged boundary layer
profiles in and downstream from number, and the functional
the vortex fllament nozzle. U, =
= potentlal velocity, diameter
D =10 cm. quency and wavelength 1in

artificially excited
vortices would have to be representable by a single curve inde-

rélationShip between fre-

pendent of Reynolds number.

It is evident that this will not be the case at very high
viscosity or low Reynolds number: Friction would then have a
damping action, and flow 1n the nozzle and in the free Jet
could no longer be calculated on the basis of boundary layer
theory, l.e., the dimensional considerations formulated in the /151
application of boundary layer theory no longer apply, for the
axlal symmetry of the problem can certainly no longer be
neglected. For large Reynolds numbers, however, these concepts
have been confirmed not only by H. Sato [14, 15] for the separated
boundary layer behind a step and for the planar free jet, but
also by the studies published here for the round free jet. In
addition, they also explain the rule, observed by H. Sato [14,

15] and 0. Wehrmann [16], that the natural frequency is propor-
tional to the 372 power of velocity; at most,

. e
. A ~ fD <o fET ARy a2 ()
L, ti, 1 Re ! .

can still be dependent upon nozzle contour,

Figure 8 shows dimensionless natural vortex frequency,
averaged over time, as a function of Reynolds number for vortex

10



filament nozzles with diameters of D = 10 e¢m and D = 7.5 cm.
In additlon, results are plotted from hot-wire measurements in
water downstream from a vortex filament nozzle with a diameter
of D= 1.5 em. We obtain '

£8%/U, = 0.0234 ~ (5)

as the average for natural frequency.

0. Wehrmann [16] has

FAT e e e e e .
e 1 3 measured the distance between
7d 7y, M T LT IR T
BT/ et s S bl e e two successive vortices
& | Theoretischer Wert fn . ‘
Rayleighscher Naherung _ under artificial excitation
1 ;
as a function of frequency
2 for three different velocitles.
i Lt g1 12.19° .
‘ Pe One obtains the wavelength

associated with each vortex
Fig. 8. Natural vortex frequency frequency in this manner.
r6#/U, downstream from a vortex Figure 9 shows the experi-
fillament nozzle as a function of

Reynolds number Re = UgD/v. mental results plotted in

8% = Displacement thickness of
boundary layer in nozzle this diagram we find the
end cross section;

dimensionless form. From

wavelength associated with
Measurements in air for nozzle
diameter D = 10 e¢m (o), D = 7.5
cm (®), and in water with D = o F -

= 1.5 em (V). A/S5% = 25,1, (6)

Key: a. Theoretical wvalue in
Rayleigh's approximation

the natural frequency to be

3. Stabllity Study

3.1. Nozzle Flow

The question arises as to what wvelocity profile is respon-
sible for instablility. It was probable from the outset that it
would be a profile measured a short distance ahead of the

11



ﬁ 50 o
ilM“ Ve  observed rolling-up process.
‘0 \\%5 Nevertheless, a check was
Py S N : '  first made as to whether
“5“*'——3§% the boundary layer profile
MTMWNUMN/M%@%% might already be unstable
?gﬁ%§;$Mr@£mw o in the nozzle,l basedson
%ﬂﬂﬁ??# stability theory. Since,
! s i ?m%1 T according to Fig. 5,
‘ L boundary layer thickness

- _ laree
Fig. 9. Wavelength A/8% as a decreases along a larg

function of freguency f£8*/Ug portion of the nozzle con-
downstream from the vortex 1q 4
» to -=- this is also
filament nozzle; noszzle dlameter ur ‘
D =10 cm, §*% = displacement plausible on the basls of
thickness ofrboundary_layer in the highly accelerated
nozzle end cross section, .
velocity Ug = 7.3 m/sec (o), flow -- and only lncreases
Uy = 6.0 m/sec (o), Uy = U.5 in in th
nsec (V). again in e last part,
where acceleration approaches
Key: a. Theoretl?al curve 1n zero, the profile in the end
Rayleigh's approximation
b. Natural freguency cross section was studied

with respect to its stability.

The stability curves obtained by T. Tatsumi [18] for pipe inlet
flow were taken as a basis. This appeared justified because
the velocity profile in the end cross sectlon of the nozzle has
a distinct boundary layer character, and we know that boundary
layer flows can be considered parallel on the basis of the

stability theorys.

Proceeding from Prandtl's boundary layer equatlons for
flows whose velocity fleld, in cylindrical coordinates, is of
- the form {vn(r,z), 0, vz{(r,z)}, T. Tatsuml calculates a.serles

31n the stability theory, those flows are called parallel flows
in which the velocity vectors are parallel fo one anéther at
all points iIn the flow field.

12



of velocity profiles for pipe inlet flow in the flrst part of
his article. 1In place of cylindrical coordinates z and r, he

introduces the new dimensionless varlables
. Loz 17 r A ]
A Y='z[l‘('ﬂ)JJ (7)

for this purpose; here a 1s plpe radius and R 1s a Reynolds
number based on the velocity averaged over the plpe cross section
and upon pipe radius. He characterizes the velocity profiles
for various values of X by means of a displacement thickness

y, ‘ -
500 = f =, (8)

where u(X,T) 1s the axial velocity component at point (X,T), and
Ug(X) is velocity on the axis, 1.e. at the point (X,ml/2).” From
the inlet to the Hagen-Poiseuille profile, & increases from 0 to
0.25. Boundary layer theory 1s of course only appllcable as

long as a flow core exlsts; in this reglon, § varies between 0
and 0.15. The boundary layer profiles u/Ug for various X or &

can be made to coincide if we Iintroduce the variable

H= 1T/6 (9)

in place of T. The value of boundary layer thickness & which
would be associated with the profile in the nozzle end ecross

T~
=
\n
no

|

section 1s of course a function of Reynolds number Re = U,D/v.
Table 1 contains various pairs of values; the fact that the
values of 6 for Re >_103 all lie below 0.15 basically just con-

uFor pipe inlet flow, this velocity is practically equal to the
velocity Up(X) at the margin of the boundary layer, since the
lines of flow are not noticeably bent.

13



boundary layer character in thls Reynolds number range.

TABLE 1.
[
U, n . (mu) ‘
i v
i roserlt |
S 0,9 2,5 10! E
10! 0,025 4,0 - 10 b
107 0,004 1,2 10°
10¢ 0,0025 3,0 10%

In the secondiipart of his article, T. Tatsuml derives the
axlally symmetrical counterpart to the Orr-Sommerfeld equation5
first given by J. Pretsch [19], apparently without being
acqualnted with Pretsch's article. If we write the differential
equation for perturbation as a function of H, we merely have z
veloclty profile for all values of &, but then § occurs explicitly
in the differential equation, so we still obtain different
stability curves for different values of §. These curves were
calculated by T. Tatsumi for several values of §.

The critical Reynolds numbers for the § values in Table 1
have been determined by interpolation from the values given by
T. Tatsuml. We see that up to Reynolds numbers of about 105,
the critical Reynolds number is larger than the actual Reynolds
number for the flow, i.e., flow 1s stable. This corresponds at
the same time to the limit above which no measureménts were made
because flow became too turbulent.

" 3.72.  Free Jet

Further study was based on the veloclty profile for x/D =
= 0.16. That is the last profile measured, since the rolling-up

6f. footnote ©
14



The surprising result was that the stability calculation even
Tor a quite rough approximation of this profile agreed quite
well with the measurement results, i.e. when we simply replace
it with a stralight line whose slope coincides with that of the
measured proflle at half 1ts height (cf. Flg. 10).

The frictionless
u stabllity calculation

b . for this profile was
published as early as

// z J | 1880 by Lord Rayleigh
[20]. He employs Euler's

equatlions in Cartesian
coordinates using

Fig. 10. Approximation of the

measured veloclty profile in B ) e

the free jet; a. first approxi- «- () +i(xy.1), 2M=§(LyJL10=O\(10)
mation, b. second approximation, a=TF() + Gixyt)

¢. measured profile. f

for the velocity components

and for pressure dlvided by the constant density; the quantities
with bars are meant to represent the basie flow, and the quanti-
ties with tildes are meant to represent a small perturbation in
this basle flow. Since the basic flow must satisfy Euler's
equations, the terms which are free of perturbation quantities
cancel out. By neglecting the quadratic terms in the perturba-
tion quantities, moreover, Lord Rayleigh obtains the so-called
linearized frictionless differential perturbation equations

dn  _du _,. . 975

o ] o don e — {,}j ,

o _0p _ . 07

at dx ' dy’ (11)
% T
dz Oy =

15



We see that we can satisfy these equations with the expression

g _ﬁ' ’ _|‘u(x.-‘—c?) "‘“ o= i 4 pee(x —ct)
w ff’(.‘/)e ¢ i a‘p(y)l.? L (12)

G=—dael T =oh [ (T — ) gy

where ¢ must satisfy Rayleigh's equation
(W - e)(e" - &%) - " = 0 (13)

The theory of this equation is generally quite complex and
lacking in clarity; but for a velocity profile such as that in
the present case, composed of llnear subsections, it is possible
to specify the general solution immediately; 1t has already been
discussed by Lord Rayleigh and has the form

¢ = Ae®Y + Be~W (14)
where lntegratlon constants A and B are different in each region
of the velocity profile. Since U and ¥ must vanish at infinity,

we obtain the following more detailed form in the case at hand
(ef. Fig. 10):

Ageey : . for y{:»-*-

L
(p: Aje“l’-{—Bzg—“y for—2-<y‘< (15)

B,e~#v for

ﬁProceeding from the Navier-Stokes equations, first W. McF. Orr
(21], for a special case, and then A. Sommerfeld [22], in a com-
plete generalization, derived the corresponding differential
equation for real fluids. This equation was first solved success-
fully by W. Tollmien [23] and H. Schlichting [24, 25, 26]; their
theory was later developed primarily by C.C. Lin [27] and can now
be considered complete; cf. [28].

16



Boundary conditions to be applied are that ¥ and § be contilnuous

at the. interfaces. If we substitute (14) into (12), we find

that ¢ and (U - c)¢' - u'¢ are continuous as we pass through

the interfaces. This provides four homogeneous linear equations

for the four integration constants A], Ap, By and Bo; this system
only has nontrivial solutions if 1ts coefficient determinants /152
vanish. This condition leads to¢ the equation

¢ 1 1 -

where the significance of U and L can again be seen from Fig. 10.
For L - 0, thils formula naturally yields the result c¢/U = (1 % 1)/2
for the vortex layer. This equation assigns’ to each dimension-
less wave number oL or, with a = 21/A, to each dimensionless
wavelength A/L a generally complex dimensionless velocity c/Un

and thus also a dimensionless frequency fL/U = c¢pL/AU. The

profile is unstable relative to all wavy perturbations for which

an imaginary part of ¢ exists. This is the case for al - 1 - e-%L
< 0 or for aL < 1.278 and A/L > 4.916. The associated frequency
range fL/U < 0.1017 would have to correspond to the region in

which artificial vortices can be produced. The factor for time-
wise amplification is wnci; we obtain the factor for spatial
amplification if we move wilth the perturbation wave, i.e. substi-
tute x = ept; it 1s thus aci/cy. Both are zero at the boundaries
of the unstable region and have a minimum at a point between
them. Since the dimensionless propagation veloeclity cp/U is
constant over the entire unstable region (= 0.5), this occurs

for both at the same point alL = 0.797 or A/L = 7.884, where
aLey/U = 0.20118 and chi/cr = 0.40237. The associated frequency
is f1/U = 0.06342. This point of maximum amplification corresponds
to natural perturbatlon in the experiment.

If we now lay this profile on the measured profile in such
a manner that they are tangent to one another at the half-height
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point, we obtain U = U, and L = 38% as the relationshilp between
the characteristle quantities for the two profiles. For the
unstable region we thus obtain f§*/Uy < 0.0339, and for the
natural frequency and wavelength we obtain

£8¥/Uy = 0.0211 and A/6% = 23.7 (17)

These values and the functlonal relationship between frequency
and wavelength have been inecluded in Figs. 8 and 9.

M. Lessen and J.A. Fox [29, 30] have carried out a stability
calculation for a profille which, simlilar to a boundary layer,
develops from a vortex layer. To all appearances, this profile
represents a considerably better approximation to the measured
profile. Since we know how sensitive stability calculations are
relative to changes in the curve of the second derivative of the
profile, we could suppose that the results of the stability
calculation for Lessen's profile agree considerably better with
the measurement results. This is not the case, however. We
shall therefore not attempt a detailed comparison with the
Lessen~Fox theory here. '
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